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Abstract

For the problem of the diffraction of normal modes by an inclined crack in an elastic layer, an integral equation with explicit
representation of the Fourier symbol kernel is derived in the form of the product of matrices. The algorithm for calculating the
wave fields, based on the analytical representations obtained, enables a rapid parametric analysis to be carried out of the influence
of the size and orientation of the crack on the transmission of travelling waves. The influence of the inclination of the crack on the
effects of resonance trapping and localization of wave energy, which were established previously for the case of a horizontal crack,
is analysed.
© 2007 Elsevier Ltd. All rights reserved.

When solving problems of the diffraction of elastic waves by internal inhomogeneities, it is natural to take an integral
approach, where the wave field is sought in the form of integral representations in terms of basic solutions (Green’s
matrix) and unknown functions at the boundary of the region examined (the method of boundary integral equations),
or in the form of the superposition of solutions for the system of sources surrounding it (the method of fundamental
solutions). Such representations identically satisfy the initial equations within the region, and thus approximation and
discretization are carried out only at its boundary. Here, there is a considerable reduction in the number of unknowns
(the dimension of the algebraic system) and consequently in the level of computing costs.

The methods of the integral approach occupy an intermediate position between direct numerical and asymptotic
ray methods, combining their advantages. On the one hand, like the finite element method or the finite difference
method, they give a quantitative solution at the points required, but with lower numerical costs; on the other hand, the
asymptotic forms obtained from the integral representations (the contribution of poles, stationary points, etc.) give the
same physically clear wave representations as ray methods, making it possible to analyse the wave structure of the
solution, i.e. the distribution of the energy of oscillations between waves of different types.

To reduce the problems of the diffraction of elastic waves by a crack to integral equations, different approaches are
used (see, for example, the review by Boström1). In the case of cracks in a boundless homogeneous space, equations of
the Wiener–Hopf type, with a difference hypersingular kernel, arise, specified in the region occupied by the crack. For
semi-bounded media (a half-space or layer), this type of equation is observed only for cracks parallel to the rectilinear
boundaries of the medium (horizontal cracks), but for inclined cracks the classical approach, based on the use of a matrix
of basic solutions for an elastic space, leads to integral equations specified on the entire surface of the waveguide and
on the crack surfaces. Obtaining an integral equation specified only on the sides of the crack surfaces is made possible
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Fig. 1.

in this case by using Betti’s reciprocity theorem (see, for example, Refs. 2,3). Thus, the problem of discretization on
boundaries departing to infinity is removed.

In the present paper, a different technique for deriving the integral equation in the case of an inclined crack is given.
Unlike the well-known approach,2 it is based on the use of an integral representation of the wave field for a jump
in displacements on an arbitrarily oriented internal area, which is constructed in the form of a combination of waves
radiated by the crack and reflected from the boundaries of the medium, uniformly expressed by the Fourier symbols
of Green’s matrices of the half-space and layer. This representation identically satisfies the conditions on the outer
boundaries of the layer, having a simpler and physically clear form.

Numerical algorithms based on the analytical representations obtained make it possible to carry out a rapid parametric
analysis of the characteristics of the wave fields for different sizes and positions of the crack, including an analysis of
the features of the transmission and reflection of Rayleigh–Lamb travelling waves. In this sense, the present paper is a
natural continuation of investigations for the case of a horizontal crack;4–6 a characteristic feature here is the presence
of resonance frequencies at which trapping of wave energy occurs and there is sharp blocking of the waveguide,
accompanied by a resonance increase in the stress intensity factors on the crack edges.

In an analysis of the influence of the angle of inclination of the crack on the resonance properties, the interesting
effect of the waking of ‘dormant’ resonance poles is found. The presence of some of them does not show up in the case
of one of the fundamental modes incident on a horizontal crack, but comes through with a small angle of inclination
(see Section 5). Numerical results illustrating the effect of the energy transparency of a vertical crack when a higher
normal mode appears are also given.

1. Mathematical model

In a plane formulation we consider the steady harmonic oscillations u(exp)(−i�t), u = {ux, uz}, of a free elastic
waveguide of thickness H, occupying, in a Cartesian system of coordinates x = {x, z}, a strip region |x| < ∞, −H ≤ z ≤ 0.
(Here and below, the components of the corresponding column vector are given in curly brackets.) A strip crack (an
infinitely thin rectilinear cut of width 2a) makes an angle � with the horizontal axis Ox; the surfaces crack do not come
into contact with each other. The boundaries of the layer and the surfaces crack are assumed to be stress-free, with the
exception, perhaps, of a local region of application of a specified load q0 exp(−i�t). As the source, it is also possible
to consider the specified initial field u0, for example, for waves incident on the crack from infinity. In this case there
is no surface load (q0 ≡ 0).

It is assumed that, on the crack, the displacement field undergoes a discontinuity with an unknown jump v:

(1.1)

Relation (1.1) is written not in global coordinates x but in crack-associated local coordinates x1 = {x1, z1} (Fig. 1). In
these coordinates the crack occupies the segment |x1| ≤ a, z1 = 0.
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The coordinates of a point in a global system (x) and in a local system (x1) are connected by the relations

(1.2)

in which xc = {0, −d} are the global coordinates of the centre of the crack, d is the depth of the crack and C(�) is the
matrix of rotation by the angle �. The matrix C in relation (1.1) converts the vector u, specified in a global system, into
a local system of coordinates.

By virtue of the linearity of the relations used, the harmonic factor exp(−i�t) will be omitted below, and, with
regard to the complex amplitude of displacements u(x), the following boundary-value problem is formulated

(1.3)

(1.4)

(1.5)

where � and � are the Lamé constants, � is the density of the elastic medium, � = {�xz, �z} is the stress vector on the
horizontal surface and �1 is the stress vector on the crack surfaces in local coordinates. In the general case the stresses
�n on an area with unit normal n are related to the displacement field by the stress operator Tn:

For horizontal surfaces with a normal n = {0, 1}, the stress operator notation Tz is used below, similar to the operator
in a local system – Tz1 . In this notation, the stress vectors under conditions (1.4) and (1.5) are connected with the
displacements u by the following relations

In addition to conditions (1.4) and (1.5), the radiation conditions at infinity (x → ±∞), resulting from the limit
absorption principle, are imposed on the solution u. Within the framework of the technique used, they govern the
direction in which real poles are bypassed by the integration loop � of the inverse Fourier transform F−1 and the
choice of branches of the radicals � = √

	2 − 
2
n (see Ref. 7). In the special case where H = ∞, the layer degenerates

into a half-plane; the last condition of (1.4) is replaced in this case by the radiation condition when z → −∞.

2. The structure of the wave field

The field u in a waveguide with a crack consists of the initial field u0(x) excited in the waveguide without a crack by
a specified load q0 or arriving from infinity, the crack-scattered field u1(x1) and the field reflected from the boundaries
of the layer u2(x) (Fig. 1):

(2.1)

For convenience, the fields u0 and u2 are given in the global system x, and the field u1 is given in the local system
x1. Each of the vector functions un (n = 0, 1, 2) identically satisfies the initial Eq. (1.3) and the radiation conditions,
while the boundary conditions split in the following way: the field u0 satisfies conditions (1.4), but continuously on the
crack, and on the crack surfaces yields a non-zero stress field �0 = CT�u0|z1=0, i.e. it does not satisfy conditions (1.1)
and (1.5); the field u1 yields the required jump (1.1) but does not satisfy conditions (1.4) and (1.5) (the crack field in
the entire space); the field u2 is introduced to correct of the conditions at the boundaries of the layer, i.e. it satisfies the
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following conditions stemming from conditions (1.4)

(2.2)

The stresses q±
2 are opposite in sign to the stresses on the boundaries of the layer induced by the field u1.

With this splitting, it only remains to satisfy the condition on the crack surfaces (1.5), which, taking into account
the transformations carried out, we will write in the form

(2.3)

This condition is used to derive the matrix integral equation for the unknown jump v to which the solution of
the initial boundary problem (1.3)–(1.5) reduces. Integral representations of the fields u1 and u2 in terms of v are
constructed in advance.

3. Integral representations

The derivation of the required representations is based on well-known solutions for a half-plane in a layer in the
form of the inverse Fourier transform

(3.1)

The Fourier symbol of the solution

of these auxiliary problems is written in the form of the product of Fourier symbols of Green’s matrix of the regions
considered and the loads specified on their boundaries:

(3.2)

(3.3)

where K+∞ and K−∞ are the symbols of Green’s matrices for the half-planes z ≥ 0 and z ≤ 0 respectively, K−
H is the

symbol of Green’s matrices for a layer of thickness H with non-zero stresses on only the upper face:

and K+
H is the symbol of Green’s matrices for a layer of thickness H with non-zero stresses on only the lower face:

The technique for deriving Green’s matrices is given, for example, in Ref. 7, and the explicit form of their elements in
the notation used below is given in Ref. 5 (see also Glushkova, NV, Definition of and allowance for singular components
in problems of elasticity theory. Doctorate Dissertation, 1.2.04, Rostov state University, 2000).

We will use representation (3.2) in the local system x1, taking as q the crack plane stresses q1 related to the field
u1:

In this case, relation (3.2) gives a representation for U1 when z1 ≥ 0 and z1 ≤ 0, while for the symbol of the jump
V = F1[v] from relations (1.1), (2.1) and (3.2) it follows (Q1 = F1[q1]) that

(3.4)
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or

(3.5)

(3.6)

where � or later �1 is the parameter of the Fourier transform with respect to x1. Note that, of the terms in relation (2.1),
a contribution to v is made only by u1 (in relations (3.4) and (3.5) C1 does not occur, since C · C1 = I is an identity
matrix). As a result, for the Fourier symbol of the field u1 in local coordinates we have

(3.7)

By virtue of conditions (2.2), to obtain the expression of U2(	, z) in terms of V, it is now sufficient to replace Q±
in Eq. (3.3) by the values Q±

2 expressed in terms of U1 in the form of relation (3.7). However, Q±
2 must be specified in

the form of the Fourier transform with respect to x in the global system x, whereas U1 = F1[u1] is the transform with
respect to x1. The non-parallel nature of these axes is the main obstacle to deriving convenient representations. If the
inverse transform F−1

1 is applied directly to Eq. (3.7), and then the rotation operator C1, the stress operator T2 and the
operator of the Fourier transform with respect to x, then, instead of an explicit matrix relation connecting Q±

2 with V,
we obtain a cumbersome expression with double integration.

The required matrix relation can be obtained if the approach proposed for an inclined crack in a half-space8 is used.
The idea consists in rotating the system of coordinates not only in the initial space but also in the space of the parameters
of the complete (for all spatial coordinates) Fourier transform � = {	1, 	2}, (	1 ≡ 	). The components of the Fourier
symbol, depending only on the length of the vector �, and the scalar product (�, x) = 	1x + 	2z are invariant under
such rotation, which makes subsequent calculations very much easier, enabling, in particular, the residue integrals
arising here to be taken.

To obtain the complete transform Û1(�), � = {�1, �2} (�1 ≡ �), in the local system x1, we will apply to U1(�1,
z1) the transformation with respect to z1: Û1 = Fz1 [U1]. The dependence on z1 occurs in K±∞ only via the exponent
en = exp(−�n|z1|), and therefore the integrals arising here are taken in explicit form:

As a result

(3.8)
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The conversion of u1 into the global system x requires the replacement of relations (1.2) in the inverse transform

(3.9)

If, at the same time, rotation in the plane of integration � is carried out using the same rotation matrix C: � = �(�) = C�,
then these replacements do not alter the structure of the exponent in relation (3.9):

or the length of the vector �: |�| = |C�| = �. In particular, in the second equation of system (3.8), �n(�) = �n(	) =
|	2| − 
2

n, i.e. the polar factors |	| = 
n of the integrand are also not changed.
Thus, for the stress vector q+

2 (x) = −TzC1u1|z=0 we have

(3.10)

where Tz is the Fourier symbol of the stress operator in the space of the double transform with respect to x and z.
Exponential decay of the integrand in the lower half-space of the complex plane 	2 (through the exponent exp(−i	2d),
d > 0) enables as to apply Jordan’s lemma for the integral with respect to 	2, closing the loop �2 in the lower half-plane,
and then to replace it with the contribution of residues at the poles falling within the closed loop

The branches of these radicals (as above, for �n(�1)) are fixed by the condition Re�n ≥ 0, Im�n ≤ 0 for real 	1 and

n. The limit absorption principle gives the poles a bypass by the loop �2: i�n above, and i�n below (when they reach
the real axis for pure imaginary values of �n). Therefore, the residues for q+

2 are taken at the poles 	2 = −i�n. With
similar considerations for q−

2 (x) with z = −H, the exponent exp(i	2(H − d)) arises, determining the closure of �2 in
the upper half-plane and the contribution of the residues at the poles 	2 = i�n.

Obviously, the integrands subsequently obtained in the inverse Fourier integrals with respect to 	1 will also be the
required explicit representations for Q±

2 (	):

(3.11)

Thus, the Fourier symbol of the field reflected from the boundaries of the layer

(3.12)

as with Q1 and U1 of the form of Eqs. (3.5) and (3.7), is also expressed in terms of V, which enables us to derive an
integral equation for v.
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4. Integral equation

We will substitute the representations (3.7), (3.11) and (3.12) obtained into the condition (2.3) in the form of inverse
Fourier transforms. Taking into account that

and, changing the order of integration, we arrive at a matrix integral equation that, in operator notation, has the form

(4.1)

where

(4.2)

The matrix operator Tθ(	, ∂/∂z) is obtained from T� by replacing the operator of the derivative ∂/∂x by −i	. The
remaining operators ∂/∂z act on K±

H (	, z); the elements of the matrices ∂K±
H/∂z are written in explicit form.

The operator L1 is a well-known hypersingular integral operator for the problem of diffraction by a crack in boundless
space. The hypersingularity

is due to the exponential growth of the symbol L1(	) = O(	), 	 → ∞. By virtue of the diagonality of L1, such a
problem breaks down into two independent problems in the normal and shear components of the jump v.

The operator L2 describes the influence of waves reflected from the boundaries of the waveguide. If the crack does
not touch the surface, the integral over 	 in the representation of l2 converges for all x1, 1 on account of exponentially
decaying factors in the representation of L2. In this case the kernel l2 is smooth for both variables. In the case of contact,
such decay does not occur when x1 = 1 = a (or −a), which leads to a singularity of the elements of l2 at this point.
The singularity of l2, however, is weaker than the hypersingularity of l1. When L2 is present, the matrix of the overall
operator L becomes filled, and therefore the matrix integral Eq. (4.1) does not break down into two scalars.

The widely used method for the numerical solution of one-dimensional integral equations involves replacing the
integral operator with a quadrature sum with subsequent determination of the values of the unknown at the approxima-
tion holds from the linear algebraic system, arising, for example, from collocation conditions. With strong singularity
of the kernel, such an approach requires strict observation of a certain arrangement of approximation and collocation
nodes that ensures regularization of the system and a stable and rapid convergence of the numerical solution.9
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Another popular method, when solving problems of diffraction by a crack, for overcoming problems associated
with kernel hypersingularity is based on the use of the property of orthogonality of certain polynomials with the weight
generated by the singular part Ls of the operator L = Ls + Lc:

where �jk is the Kronecker delta, and Lc is the smooth part of the operator L.10–12 The expansion, by such a system,
of the basis functions �k

(4.3)

with subsequent determination of the coefficients ck using Bubnov’s scheme (the orthogonality of the discrepancy
LvN − f0 to the system of projectors �j) leads to a linear algebraic system of the second kind in c = {c1, . . ., cN}:

(4.4)

Hear

ajk = (L�j, �k)
L2

and ac,jk = (Lc�j, �k)
L2

are 2 × 2 partitioned matrices and fj = (f, �j)
L2

are vectors of length 2.
The elements dj are written from the conditions of orthogonality in explicit form, whereas the definition of the elements
of the matrix Ac does not require the evaluation of singular integrals.

However, for a regularization ensuring numerical stability of the solution of the algebraic system, the singular
component does not have to be isolated in explicit form. It is sufficient, as the basis �k, to select a system of functions
strictly allowing for the nature of the behaviour of the solution at the edges of the segment −a ≤ x1 ≤ a. The well-known
root feature of stresses in the vicinity of the crack edges for the required jump in displacements v corresponds to a root
tendency to zero:

Therefore, the natural basis here comprises Chebyshev polynomials of the second kind Uk(x), orthogonal with weight√
1 − x2:

The form of the projectors �j is not of such great importance; in particular, �j(x1) = �j(x1) were used. Note that the
stress intensity factors (SIF)

are uniquely expressed in terms of v±
0 .2

At first glance it appears that the determination of the matrix elements of the system ajk requires numerical integration
of triple integrals. However, in the integral representation of the kernels l1 and l2, the dependence on x1 and 1 appears
only through the exponents (see relation (4.2)), and therefore the given integrals are expressed in terms of the Fourier
transform of the basis functions �k = F1[�k] and �j = F [�j]. For the selected polynomials they are written in the
explicit form13
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Fig. 2.

As a result, we arrive at representations in the form of single integrals with respect to 	:

(4.5)

L̃2(	, �) has the form (4.2) in which, at the position of the exponents exp(∓1�n sin �) in the matrix P±, the func-
tions �k(	 cos � ∓ i�n sin �) occur, and, at the position of the exponents exp(∓�nz), the functions �j(−	 cos � ∓
i�n sin �) exp(∓d�n).

The contour integrals with respect to 	, similar to the integrals (4.5), traditionally arise when solving dynamic
problems within the framework of the integral approach (see, for example, Refs 4–8), and therefore methods for their
numerical integration are now well developed. The main problem here is the slow convergence of the integrals at infinity
on account of the growth of L1(	) when 	 → ∞ (and the non-exponential decay of L2 when the crack reaches the
surface). Acceleration of the convergence is achieved by isolating and integrating the slowly converging components
in explicit form, which is equivalent to the above-mentioned isolation of the singular part Ls of the operator L.

Note that in Bubnov’s scheme the presence of the functions �k and �j ensures better convergence of the integrals
than when calculating the values of the kernels l1 and l2 at fixed points, which is necessary in the collocation method.
Therefore, in spite of the apparent simplicity, the use of the collocation method to solve Eq. (4.1) requires no less
expenditure than does the implementation of Bubnov’s scheme.

5. Numerical analysis

The reliability of the results obtained was monitored by a numerical check of the boundary conditions and energy
balance, and also by comparison with the numerical results of other authors. For an inclined crack in a half-space,
examples of comparison with the results of Ref. 2 are given in Ref. 8. For a crack in a layer, results14 obtained by the
strip-element method were used as the control. The small circles in Fig. 2 give the values of the amplitude of vertical
oscillations of the surface |uz(x, 0)|, excited by the load q0(x) = {0, �(x + 2)} (see Eq. (1.4)), in a layer with an inclined
crack (� = 5.7◦, a = 1.005, d = 0.5, � = 1.57), obtained by means of the integral representations derived in the present
paper (by solving integral Eq. (4.1)); the continuous curve is the graph obtained by the finite element method.14

Here and below, the results are given in dimensionless form in units expressed in terms of quantities H, υs and
�. Thereby, the dimensionless angular velocity � = 2�f H/υs, where f, H and υs are the dimensional frequency, layer
thickness and velocity of the S waves in the layer, and all the linear dimensions are related to H.

Let us consider how the inclination of the crack, �, affects the behaviour of the resonance poles �n (the spectral points
of the integral operator L) closest to the real axis. Numerically they are approximated by roots of the characteristic
equation detA(�) = 0, where A is the matrix of system (4.4). The values of �n given in the Table 1 for a mean crack
of unit half-width (d = 1/2, a = 1) with different angles of inclination indicate that Re�n depends weakly on �, whereas
all |Im �n|, apart from n = 3, increase as � increases, i.e. as inclination of the crack increases they move further away
from the real axis.

Earlier it was established that, in the case of a horizontal crack at frequencies � ≈ Re�n, sharp trapping of the
traveling wave energy is possible, leading to blocking the waveguide and an increases in the SIF.4–6 However, for a
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Table 1

� �1 �2 �3 �4 �5

0◦ 0.734–0.0003i 1.755–0.003i 2.097–0.104i 2.944–0.0007i 4.190–0.025i
4.5◦ 0.737–0.011i 1.760–0.014i 2.101–0.103i 2.954–0.005i 4.205–0.032i
9◦ 0.756–0.052i 1.774–0.050i 2.116–0.100i 2.983–0.019i 4.249–0.056i
15◦ 1.786–0.168i 2.152–0.095i 2.051–0.054i 4.336–0.138i

Fig. 3.

middle crack, the appearance of these effects depends on the type of travelling wave. Thus, when a zero antisymmetric
mode a0 is incident on the above-examined horizontal crack (the continuous curve in Fig. 3), blocking (i.e. a sharp
reduction in the transmission coefficient 
+) is observed only in the vicinity of the third pole �3 (see Fig. 3a). However,
when a zero symmetric mode s0 is incident on the crack, conversely, blocking occurs at all �n apart from �3 (Fig. 3c)
(for �1 on the scale of the given figure it is not noticeable, since it occurs in a very narrow frequency range). Here
and below, 
+ is defined as the ratio of the energy of passing waves to the energy of the travelling wave. Thus, the set
of poles can be divided into two groups: in the first group �3, and in the second group all the others. It is interesting
that resonance growth of the SIF only occurs at the frequencies of the second group, for both a0 and s0 incident on the
crack (see Figs. 3b and d respectively).

Of equal interest is the effect observed in the case of an inclined crack. At � = 4.5◦ (the dashed curve in Fig. 3), all
‘dormant’ before this poles of the second group give resonance blocking the mode a0 (Fig. 3a). At the same time, in
this case also, �3 does not appear at all on the SIF graphs (Figs. 3b and d).

More information about the dependence of the transmission factor 
+ and the stress intensity factor k+
2 on the angle

of inclination � and the frequency � is given by the surfaces 
+(�, �) and k+
2 (�, �) constructed for the same travelling

fundamental modes a0 and s0. In Fig. 4, these surfaces are shown by the level lines and by the grey colour. The dark
zones in Figs. 4a and c show the waveguide blocking mode, and those in Figs. 4b and d show the growth in the SIF.
The graphs in Fig. 3 show the cross-sections of the corresponding surfaces of Fig. 4 along the lines � = 0◦ and � = 4.5◦.
The results given in Figs 4a and b indicate, in particular, that the resonance blocking on account of pole �3, as with the
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Fig. 4.

growth in the SIF on account of poles of the second set, is traced roughly up to � = 15◦. At the same time, the blocking
properties of the second set, which are not immediately evident, are retained up to � = 30◦, when the cross-section of
the waveguide is covered entirely by the inclined crack (a sin � = d).

The continuous dark area on the right-hand side of Figs. 4a and c corresponds to the situation where the crack covers
the cross-section of the waveguide almost completely. In some cases, however, the crack may remain transparent for
the passage of the wave energy, even with partitioning of up to 95% of the layer thickness. By way of example, Fig. 5
gives the surface 
+(a, �) for a vertical crack (� = 90◦, d = 1/2) in the case when mode a0 is incident on it. In the range
0 < � < �, where only two fundamental modes a0 and s0 can be excited in the layer, an increase both in the length of
the crack and in the frequency � leads to a monotonic reduction in 
+. However, when the next highest mode appears
with � > �, the crack practically ceases to block the energy flux, although, undoubtedly, its redistribution between
diffraction-excited modes occurs. The effect of energy transparency appears in Fig. 5 in the form of a white horizontal
band at the level � ≈ 3.2. The dark spot at its origin (a = 0.2) is the result of resonance blocking at a comparatively
small crack size.
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Fig. 5.
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